The authors of this paper attempted to identify factors that would predict peri-intubation cardiac arrest using a cohort of patients requiring emergent intubation in a large urban emergency department. Specifically does the Shock Index accurately predict those who will suffer post-intubation cardiac arrest? The Shock Index (HR/systolic BP) is essentially an attempt to quantify a patient’s volume status and cardiac reserve into simple ratio. These same authors have examined this score’s ability to predict peri-intubation hypotension in the past and found similar predictive capabilities.
Given the pedigree of the authors (Dr. Alan Jones and company) it is no surprise their chart review methods were next to flawless. Using standardized data collection forms, a single trained extractor identified patients who underwent ED intubations over a one year period. To ensure inter-observer reliability, 10% of this data was randomly audited by a second extractor blinded to the trials hypothesis. Backwards stepwise regression was utilized to determine what factors were independently associated with peri-intubation cardiac arrest (defined as cardiac arrest up to 60 minutes after intubation).
In this cohort, the rate of cardiac arrest after intubation was 4.2%, or 17 patients. 10 out of these 17 events occurred within 10 minutes of the intubation and, in 15 of the 17 events the initial arresting rhythm was PEA. As one would expect, patients who experienced peri-intubation cardiac arrest had faster a heart rate, lower blood pressure and more frequent incidence of pre-RSI hypotension. The only two metrics that were found to be independently associated with cardiac arrest were the patient’s body weight and pre-intubation Shock Index. The Shock index was found to have an odds ratio of 1.16 with a confidence interval ranging from 1.003 to 1.3. Put in another manner, it was found to have an AOC of 0.73, rendering it essentially clinically useless.
Given these test characteristics, if we were to use a Shock Index of 0.88 (as suggested by the authors) to determine who is at risk for peri-intubation arrest than we would be left unprepared for an unacceptable quantity of patient who will decompensate during the procedure. This should be inherently obvious, as a formula that incorporates only heart rate and systolic blood pressure is incapable of encapsulating all the many reasons a patient may code peri-intubation. Not to mention that this study does not tell us whether the patients whom the Shock Index identifies as “at risk” will actually benefit from our added vigilance and pre-intubation hemodynamic optimization. Or does the Shock Index merely highlights a spectrum of the more critically ill patients who will inevitably deteriorate despite our clairvoyant best efforts?
Tachycardic, hypotensive patients are at increased peril for peri-intubation arrest. Sicker patients, older patients, and patients with poor cardiac reserve are all at higher risk. Most importantly, the Shock Index does not accurately predict who will and will not arrest after intubation. Similar to tools meant to predict difficult airways (not accurate enough to depend on clinically), we must be prepared for peri-intubation arrest in the majority of the patients requiring emergent intubation. Once a patient reaches the critical juncture of requiring intubation, we should be aware of all the perils this procedure involves and plan accordingly.
“Incidence and Factors Associated with Cardiac Arrest Complicating Emergency Airway Management”
www.ncbi.nlm.nih.gov/pubmed/23911630