More Mistakes In An Unfamiliar System

Probably tells us what we already know – and likely underestimates the problem.

These authors take a retrospective look at all the reported medication errors between 2000 and 2005, and then try to associate increased errors with the involvement of a temporary staff member.  The problem is, they don’t actually have staffing documents that report which employees are temporary – they rely on the population of a QA field listing “contributing factors”, under which temporary staff is an option.  So, you can dismiss this as a bit of garbage-in/garbage-out depending on how accurate the reporting is – but, I figure, if anything, people will forget to implicate temporary staffing more frequently than not.
More interesting – and potentially confounding re: temporary vs. permanent – are the perceived reported reasons behind the medication error.  Temporary staff were more likely to be reported to have knowledge deficits, performance deficits, and fail to follow appropriate procedures.  I might read into that data that it’s easier for an unfamiliar temp to appear knowledge-deficient, although that’s just my own imagination.
From a risk management standpoint, the solution seems to be: whatever the retention costs of your permanent staff members, they are almost assuredly lower than the costs associated with the errors inflicted upon patients by temps.
“Are Temporary Staff Associated with More Severe Emergency Department Medication Errors?”

Epinephrine Neither Wins Nor Fails

The crux of the problem – epinephrine continues to improve short-term ROSC with uncertain long-term outcome improvement.

This is a prospective out-of-hospital arrest study from Australia in which epinephrine or saline placebo was given to patients during resuscitation by EMS.  And, like many studies before it, it fails to show a meaningful difference between patients receiving epinephrine and patients receiving placebo.  Rather, their primary outcome of survival to hospital discharge had 1.9% with placebo and 4.0% with epinephrine – but this result was not statistically significant with a p-value of 0.15.

Of course, what the lack of statistical significance means in this case is that this difference could have occurred by chance 15 times out of 100 times they performed this study – which, while not meeting the gold standard of 5 out of 100, is still a reasonably interesting clinical trend.  Like all studies before it, the short-term endpoints met statistical significance, including ROSC of 8.4% for placebo and 23.5% for epinephrine.  There are a few confounding differences between groups: more placebo patients had witnessed arrest, although the number with bystander CPR was the same; more placebo patients were endotracheally intubated in the field, which usually confers a survival disadvantage; and more epinephrine patients were ultimately transported to the hospital from the field.

So, there’s two ways to look at it: 1) epinephrine works, and we just need to figure out how to salvage more of those ROSC or 2) epinephrine is flogging far too great a number of lost husks back to life that will go on to consume ICU resources and expire regardless.

But, if we’re not going to give epinephrine, how do we otherwise look busy during a code?  And, what happens downstream to our epinephrine ROSC that fail to leave the hospital or the ER, and can we prevent it?

I am still not sure what the right answer is – like many diseases, cardiac arrest patients are a heterogenous group in which there is almost certainly a subset of patients that benefits from epinephrine, but we don’t yet know who that might be.

“Effect of adrenaline on survival in out-of-hospital cardiac arrest: A randomised double-blind placebo-controlled trial.”
www.ncbi.nlm.nih.gov/pubmed/21745533

Thanks to @cliffreid of Resus M.E! for first noting this article.

Sternal IO is the Best IO

All our cardiac arrest patients roll in these days with an IO in place – and we are full proponents of rapid, successful access in the uncontrolled field environment.  But, how effective is it really in the CPR situation?

So, this is an animal study that tries to address the theoretical efficacy of intraosseous access versus central venous access.  They use injection of dye tracers into Yorkshire swine for a comparison between intraosseous sternal, intraosseous tibial, and external jugular central venous cannulation.

Unfortunately, this is a good news/bad news study.  The good news – peak concentrations were achieved only slightly more slowly in the arterial circulation following sternal intraosseus injection than the gold standard central venous injection.  And, the peak concentrations were nearly identical.  Bad news, the tibial IO was half the speed and half the arterial peak concentration of the sternal IO.

In theory, this is of relative importance depending on which medication you’re using – presumably the speed of administration matters in CPR and peak concentration may matter as well.  Of course, this is limited as 1) pigs and 2) efficacy vs. effectiveness, because they’re not measuring clinical outcomes.

But it’s interesting to worry about.  Too bad it’s hard to do chest compressions with your access point where your hands are supposed to go.  It would be interesting to compare this result to a humeral head IO.

“Pharmacokinetics of Intraosseous and Central Venous Drug Delivery During Cardiopulmonary Resuscitation.”
http://www.ncbi.nlm.nih.gov/pubmed/21871857

New Pediatrics UTI Guidelines

For children between 2 and 24 months of age, the relevant high points for EM:
 – Don’t use bag urines.  Catheterization or suprapubic aspiration is the only acceptable way to make a diagnosis.  However, if you’re stuck, and you have to use a bag, a completely normal bag urine is diagnostic.
 – Send a culture to definitively establish the diagnosis based on pyuria and/or bacteruria and the presence of at least 50,000 CFU/mL of a uropathogen.
 – Oral antibiotic recommendations listed include amoxicillin-clavulanate, trimethoprim-sulfamethoxazole, and a range of oral cephalosporins for at least 7 days.  They do not have any evidence to compare 7, 10, and 14 day courses.  Nitrofurantoin is not appropriate.

Nothing terribly earthshaking – seems all pretty reasonable.

“Urinary Tract Infection: Clinical Practice Guideline for the Diagnosis and Management of the Initial UTI in Febrile Infants and Children 2 to 24 Months.”
pediatrics.aappublications.org/content/early/2011/08/24/peds.2011-1330

When Does a Repeat Head CT Have Value?

Not practice-changing, but an interesting observational report regarding when these authors found value in performing a repeat head CT after minor head trauma.

Specifically, they looked at a subgroup of patients whose initial head CT was normal after blunt trauma, but received a repeat head CT an average of ~8 hours later for an abnormal neurologic examination.  These abnormal neurologic examinations were further stratified into three groups – a “persistently abnormal” exam, a “acute deterioration” in neurologic examination, and a catchall “unknown” group.  The first two groups had mean GCS of 12.4 and 14.5 – but the reason why the “unknown” group is what it is – their average GCS is 4.

They found that repeating the head CT in the 61 patients they had with persistently abnormal neurologic examinations did lead to some worsening of the initial findings – but did not change management in any cases.  However, 6 of the 21 patients who had an acute deterioration had a change in management, as well as 1 patient in the unknown group.

Small sample, but interesting, nonetheless.

“Utility of Repeat Head Computed Tomography in Patients With an Abnormal Neurologic Examination After Minimal Head Injury.”
www.ncbi.nlm.nih.gov/pubmed/21857258

When Is Blunt Chest Trauma Low-Risk?

According to this study, always – but rarely.

This is a prospective 3-center trauma study attempting to discern clinical variables that predicted the absence of serious traumatic chest injury in the setting of blunt trauma.  2,628 subjects enrolled, with 271 of them diagnosed with a serious injury – pneumothorax, hemothorax, great vessel injury, multiple rib fractures, sternal fracture, pulmonary contusion, and diaphragmatic rupture.  They do a recursive partitioning analysis and identify a combination of seven clinical findings that had a 99.3% (97.4 – 99.8) sensitivity for serious traumatic injuries.

But, I might be missing the point of this instrument a little bit.  Only 10% of their cohort had a traumatic injury – yet out of the remaining 90% without serious traumatic injury, their rule could only carve out 14% as low risk.  These low risk patients, the authors then propose, obviates any chest imaging at all.  While I am all for reducing unnecessary testing, this seems like an awfully low yield decision rule.  Yes, this study identifies young patients who are perfectly fine after a low-risk blunt trauma and do not need even an x-ray – but I’d really rather see more work preventing some of the 584 chest CTs performed in this cohort.  Additionally, their criterion standard for negative imaging is inadequate – most received CXR alone and there’s no follow-up protocol to test for possible missed injuries, whether clinically significant or not.

Considering the criteria they identified, it seems they could almost get equal or greater reduction in imaging if the clinicians were simply a little more thoughtful with respect to knee-jerk imaging in trauma.

“Derivation of a Decision Instrument for Selective Chest Radiography in Blunt Trauma.”
www.ncbi.nlm.nih.gov/pubmed/21045745

iPhone Medical Apps To The Rescue

In this study, the author and creator of “PICU Calculator” for iPhone details the superiority of a medical student with a smartphone over an attending using the pharmacy reference book.  A few entertaining tidbits from their main results:
 – Medical students don’t know how a book functions – failed to correctly complete any pediatric dosing task using the British National Formulary for Children.
 – Residents and attendings managed to make the book work for them about half the time.
 – Overall across all levels of training, 35 for 35 in correct dosage and volume using the iPhone app – with a mean time savings of over 5 minutes.

So, when the author of an iPhone app choses a clinical task his app is designed to replace, it works great!  But, the larger point – as we already knew – there is a role for well-designed point-of-care electronic tools, so we shouldn’t give up on our CPOE and EHR kludge so soon.

“Students prescribing emergency drug infusions utilising smartphones outperform consultants using BNFCs.”
www.ncbi.nlm.nih.gov/pubmed/21787737

Who Are The Readmitted?

Now, where I trained, we were the only useful facility for hundreds of miles – so we actually had a a lot of continuity of care in the Emergency Department.  And nothing beat the continuity we saw when a patient who was discharged in the morning was back in our Emergency Department by evening – and the inevitable question of “how did they screw this up?”

This is a retrospective look at the readmissions from 11 teaching and community hospitals trying describe the readmissions as avoidable vs. unavoidable, characterize the cause for readmission, and see if there were any baseline characteristics that might predict readmission.  They found avoidable readmissions were in the minority, and there was no useful predictive clinical information regarding baseline differences between the readmitted group and the overall cohort – comorbidities, length of stay, new medications, etc.  When patients were avoidably readmitted, however, several recurring factors were noted:
 – Management error (48% of the time)
 – Surgical complications (38.5%)
 – Medication-related event (32.7%)
 – Nosocomial infection (18.3%)
 – System error (15.4%)
 – Diagnostic error (10.6%).

Considering CMS is looking closely at decreasing payments to physicians and hospitals for readmissions, this study provides a small amount of systematic insight into some of the things we’ve all observed anecdotally.

“Incidence of potentially avoidable urgent readmissions and their relation to all-cause urgent readmissions.”
www.cmaj.ca/content/early/2011/08/22/cmaj.110400

Good Thought, But It’s Not Pertussis

A Swiss study in which only 2.5% percent of 1,049 pediatric ambulatory and hospitalized patients presenting with a cough-illness and who were tests for pertussis were culture positive for B. pertussis or parapertussis.  Probably a relatively accurate picture of the general prevalance of pertussis in a non-outbreak situation.  They additionally report that viral superinfection is rare enough to be coincidental – 0.6% – although the authors do note other studies have reported higher incidence, particularly in RSV+ hospitalized children <6 months of age.

So, this data is out the window if there’s an outbreak situation, but the overall clinical take home is that, yet again, our index of suspicion may be too high for an infrequently diagnosed condition – and we should moderate testing in the lower acuity cases.

“Bordetella pertussis and Concomitant Viral Respiratory Tract Infections are Rare in Children With Cough Illness.”
www.ncbi.nlm.nih.gov/pubmed/21407144

Malpractice Risk in Emergency Medicine

I was actually surprised by these statistics – I expected Emergency Medicine to be higher.  After all, we’re meeting people with potentially unrealistic expectations, suffering long wait times, without continuity of care, and potential bad outcomes lurking everywhere.

But, really, our claims against and claims with payout are really pretty much average across specialties.  Neurosurgery and Thoracic Surgery are the nightmare specialties, where nearly a 5th of physicians practicing in those specialties has a claim filed against them each year.  Another interesting statistic was that Gynecology, only a little above average in claims filed against, has the highest percentage of payouts.

Neurosurgery, Neurology, and Internal Medicine lead the way in median payout, but Pediatrics, Pathology, and Ob/Gyn lead the way in mean payout – apparently skewed by the occasional massive award.

Given the legislation pending in many states these days giving additional protections to Emergency Physicians and physicians on-call to Emergency Departments, it’s really not a bad time to be in EM, from a liability standpoint.

“Malpratice Risk According to Physician Specialty”
www.ncbi.nlm.nih.gov/pubmed/21848463